- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Abdelkader, Mohamed (2)
-
Arp, Christopher D (1)
-
Bondurant, Allen (1)
-
Bravo_Mendez, Jorge Humberto (1)
-
Brown, Dana_R N (1)
-
Ekpetere, Kenneth (1)
-
Ekpetere, Peter (1)
-
Ishaya, Sunday (1)
-
Kohl, Holli (1)
-
Makwe, Edith (1)
-
Spellman, Katie V (1)
-
Temimi, Marouane (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study introduces a new automated system that blends multi-satellite information and citizen science data for reliable and timely observations of lake and river ice in under-observed northern regions. The system leverages the Google Earth Engine resources to facilitate the analysis and visualization of ice conditions. The adopted approach utilizes a combination of moderate and high-resolution optical data, along with radar observations. The results demonstrate the system’s capability to accurately detect and monitor river ice, particularly during key periods, such as the freeze-up and the breakup. The integration citizen science data showed added values in the validation of remote sensing products, as well as filling gaps whenever satellite observations cannot be collected due to cloud obstruction. Moreover, it was shown that citizen science data can be converted to valuable quantitative information, such as the case of ice thickness, which is very useful when combined with ice extent derived from remote sensing. In this study, citizen science data were employed for the quantitative assessment of the remote sensing product. Obtained results showed a good agreement between the product and observed river status, with a Critical Success Index of 0.82. Notably, the system has shown effectiveness in capturing the spatial and temporal evolution of snow and ice conditions, as evidenced by its application in analyzing specific ice jam events in 2023. The study concludes that the developed system marks a significant advancement in river ice monitoring, combining technological innovation with community engagement.more » « less
-
Ekpetere, Kenneth; Abdelkader, Mohamed; Ishaya, Sunday; Makwe, Edith; Ekpetere, Peter (, Hydrology)The long-term variability of lacustrine dynamics is influenced by hydro-climatological factors that affect the depth and spatial extent of water bodies. The primary objective of this study is to delineate lake area extent, utilizing a machine learning approach, and to examine the impact of these hydro-climatological factors on lake dynamics. In situ and remote sensing observations were employed to identify the predominant explanatory pathways for assessing the fluctuations in lake area. The Great Salt Lake (GSL) and Lake Chad (LC) were chosen as study sites due to their semi-arid regional settings, enabling the testing of the proposed approach. The random forest (RF) supervised classification algorithm was applied to estimate the lake area extent using Landsat imagery that was acquired between 1999 and 2021. The long-term lake dynamics were evaluated using remotely sensed evapotranspiration data that were derived from MODIS, precipitation data that were sourced from CHIRPS, and in situ water level measurements. The findings revealed a marked decline in the GSL area extent, exceeding 50% between 1999 and 2021, whereas LC exhibited greater fluctuations with a comparatively lower decrease in its area extent, which was approximately 30% during the same period. The framework that is presented in this study demonstrates the reliability of remote sensing data and machine learning methodologies for monitoring lacustrine dynamics. Furthermore, it provides valuable insights for decision makers and water resource managers in assessing the temporal variability of lake dynamics.more » « less
An official website of the United States government
